
EVALUATION DE LA SOLUTION IR-BIOTYPER POUR LE TYPAGE DE BACTÉRIES D'INTÉRÊT EN MÉDECINE VÉTÉRINAIRE

BIO CHÊNE VERT, UN LABORATOIRE D'ANALYSES VÉTÉRINAIRES DU GROUPE FINALAB

- BCV Chateaubourg MALDI-TOF / IR-Biotyper
- 2 BCV Lécousse (35)
- BCV Saint Mars (72)
- BCV Varades (44)
- **5** BCV Les Essarts (85)
- 6 BCV Secondigny (79)
- BCV Arzacq-Arraziguet (64)
- 1 Trégobio Landivisiau (29)
- Trégobio Ploumagoar (22)
- 3 Rectangle (56)
- 4 Labofarm Loudéac (22) PCR WGS
- 5 Labofarm Moréac (56)
- 6 Orbio (69)
- 7 AABioVet (62)

BIO CHÊNE VERT, UN LABORATOIRE D'ANALYSES VÉTÉRINAIRES DU GROUPE FINALAB

Quelques chiffres ...

- Finalab (activités analyses vétérinaires) : 150 personnes
- Bio Chêne Vert : 50 personnes
 - 120.000 dossiers/an
 - 1.200.000 analyses/an
 - 100.000 recherches de salmonelles/an
 - 50.000 identifications MALDI/an
 - 5.500 antibiogrammes/an

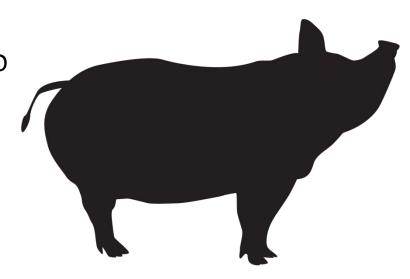
LES BESOINS EN BACTÉRIOLOGIE VÉTÉRINAIRE

- Identification fiable des bactéries
 - ☑ MALDI-TOF
- Caractérisation des bactéries pour une prise en charge curative
 - ✓ Antibiogramme, sérotypage (gen-O-typage)
- Caractérisation des bactéries pour une prise en charge préventive (vaccins, autovacins)
 limitation de l'utilisation des antibiotiques, contrôle de l'antibiorésistance
 - ☑ Gènes de virulence
 - ☑ Typage moléculaire MALDI-typage, PFGE, MLST, WGS ... IR-Biotyper
- o Caractérisation de bactéries réglementées pour identifier la source de transmission (épidémiologie)
 - ☑ Typage moléculaire MALDI-typage, PFGE, MLVA, MLST, WGS ... IR-Biotyper

LES PRINCIPAUX GERMES D'INTÉRÊT EN BACTÉRIOLOGIE VÉTÉRINAIRE

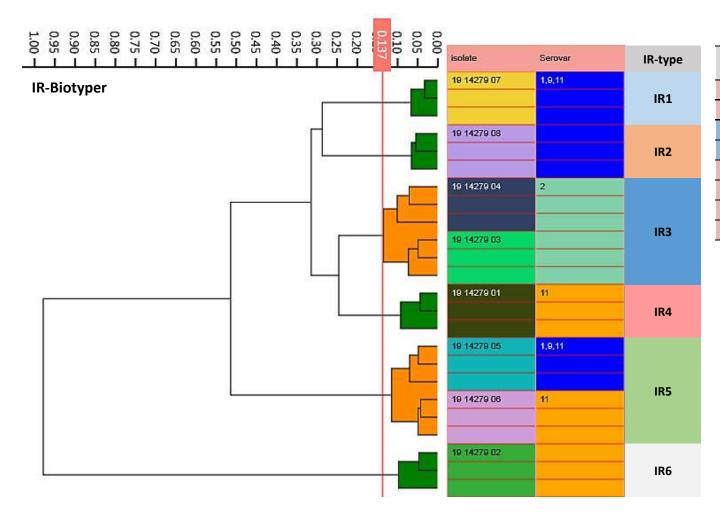
- Germes d'intérêt en filière volaille
 - Escherichia coli ★ ◆
 - Enterococcus cecorum ★
 - Ornithobacterium rhinotracheale (dinde) ★
 - Riemerella anatipestifer (canard) ★
 - Pasteurella multocida (canard) ★ 🔷
 - Salmonella enterica (réglementé) ★ ◆
- Germes d'intérêt en filière porcine
 - Escherichia coli
 - Streptococcus suis ★ ◆
 - Actinobacillus pleuropneumoniae ★ ◆
 - Haemophilus parasuis *
 - Enterococcus hirae ★
 - Pasteurella multocida

♦IR-Biotyper

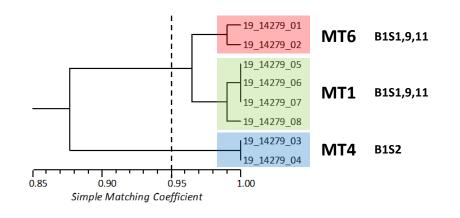


ACTINOBACILLUS PLEUROPNEUMONIAE

- Bacille à Gram-, non sporulé, immobile, capsulé, exigeant en NAD
- Pathogène respiratoire
- Mortalité et déclassement à l'abattoir
- Vaccin antitoxine et protéine de la membrane
- Autovaccin principalement sur les sérotypes 1,9,11 et 2



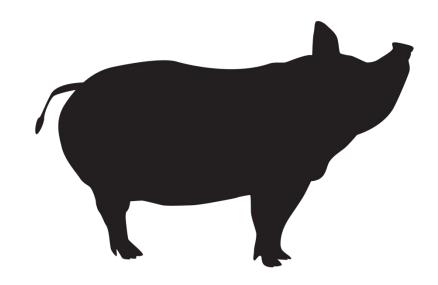
- MALDI-typage
- ERIC-PCR/WGS
- IR-Biotyper



ACTINOBACILLUS PLEUROPNEUMONIAE

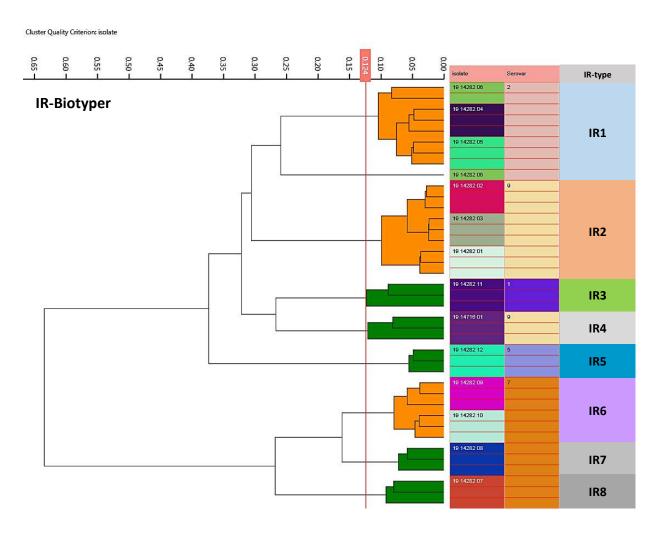
Souche	Sérotype	MALDI-type	ERIC-PCR/WGS	IR-type PVX1
19 14279 01	B1S11	MT6	EP1	IR4
19 14279 02	B1S11	MT6	EP1	IR6
19 14279 03	B1S2	MT4	EP2	IR3
19 14279 04	B1S2	MT4	EP2	IR3
19 14279 05	B1S1,9,11	MT1	WG1	IR5
19 14279 06	B1S11	MT1	WG1	IR5
19 14279 07	B1S1,9,11	MT1	EP3	IR1
19 14279 08	B1S1,9,11	MT1*	EP4	IR2

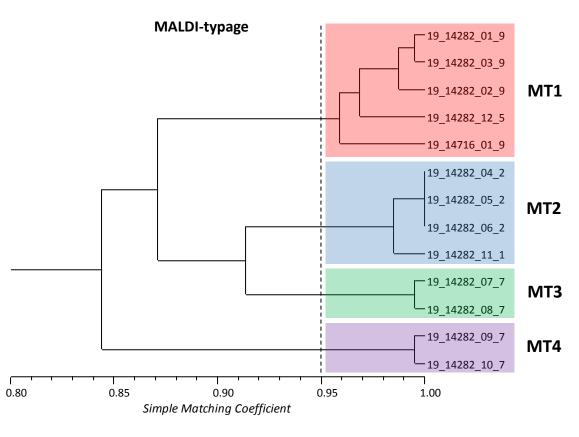
- → Cohérence du typage IR avec le typage moléculaire Différenciation importante des isolats
- → Proximités moléculaires différentes vs MALDI-typage



STREPTOCOCCUS SUIS

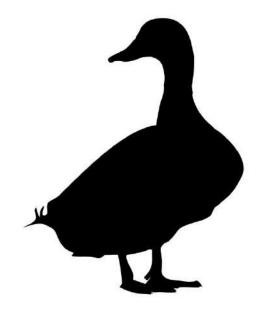
- o Coque à Gram+, immobile, souvent capsulé
- Pathogène des porcelets en post-sevrage
- Mortalité, méningite et septicémie
- Pas de vaccin commercial
- Autovaccin notamment sur les sérotypes 1, 1,2 et 2




- MALDI-typage
- ERIC-PCR/MLST
- IR-Biotyper

STREPTOCOCCUS SUIS

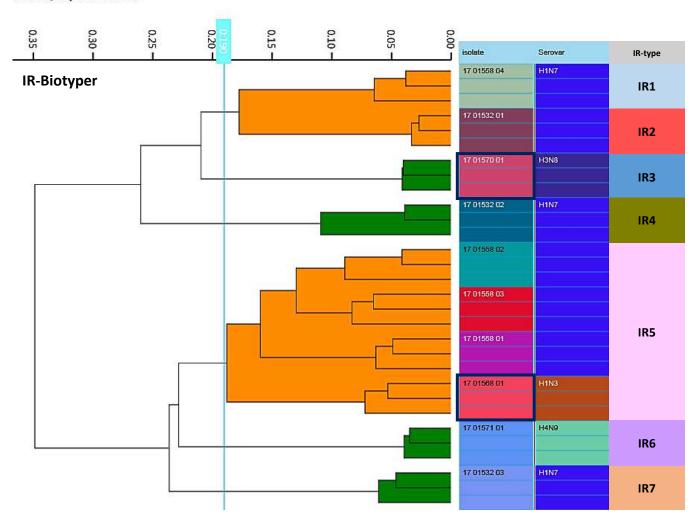
Streptococcus suis

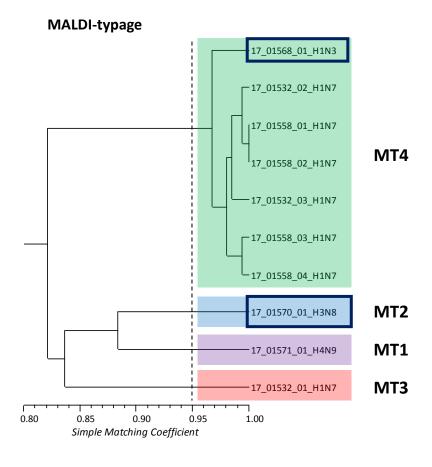

Souche	Sérotype	MALDI-type	ST/EP	IR-type TS	IR-type MH1	IR-type MH2	
19 14282 01 S9	S9	MT1	ST16/EP9	IR2	IR2	IR2	
19 14282 02 S9	S9	MT1	ST16/EP9	IR2	NEW	IR2	
19 14282 03 S9	S 9	MT1	ST16/EP9	IR2	IR2	IR2	
19 14282 04 S2	S2	MT2	ST1/EP2	IR1	IR1	IR1	
19 14282 05 S2	S2	MT2	ST1/EP2	IR1	IR1	IR1	
19 14282 06 S2	S2	MT2	ST1/EP2	IR1	IR1	IR4	
19 14282 07 S7	S7	MT3	EP7	IR8	IR8	IR8	
19 14282 08 S7	S7	MT3	EP7	IR7	IR7	IR6	
19 14282 09 S7	S7	MT4	EP7	IR6	IR6	IR6	
19 14282 10 S7	S7	MT4	EP7	IR6	IR6	IR6	
19 14282 11 S1	S1	MT2	ND	IR3	IR3	IR3	
19 14282 12 S5	S5	MT1	ND	IR5	IR5	IR5	
19 14716 01 S9	S 9	MT1	EP9	IR4	IR2	IR4	

- → Cohérence du typage IR avec le typage moléculaire Différenciation importante des isolats
- → Quelques variations dans le clustering IR, nécessité de poursuivre les mises au point

PASTEURELLA MULTOCIDA

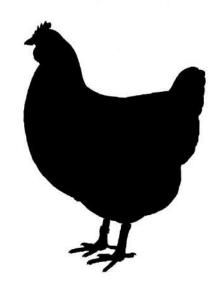
- o Bacille à Gram-, immobile, non sporulé
- Pathogène des canards
- Mortalité par septicémie
- Vaccin P. multocida H1 et H3
- Autovaccin




- → Analyse de 10 souches P. multocida sérotype H1, H3 et H4
 - MALDI-typage
 - Sérotypage somatique selon Heddleston (IDG) et Namioka (agglutination)
 - IR-Biotyper

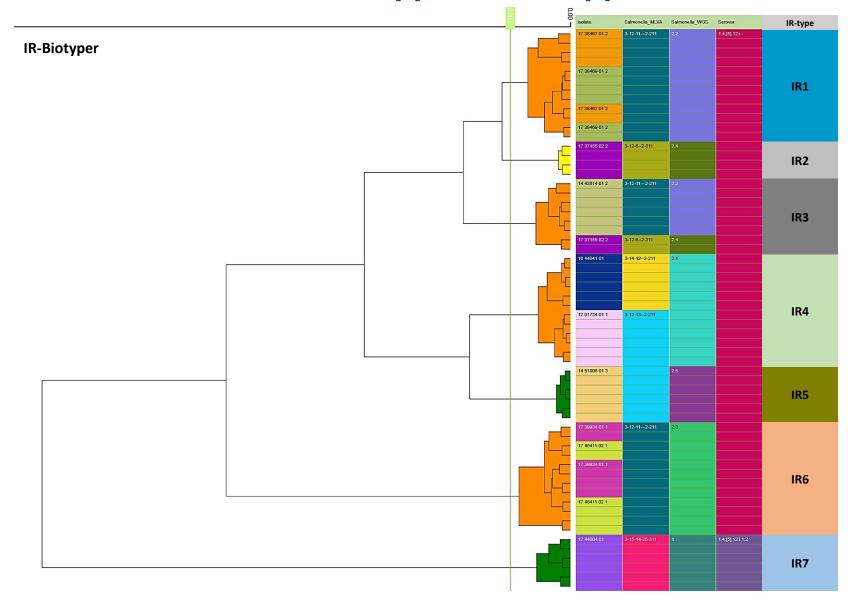
PASTEURELLA MULTOCIDA Souches vaccinales

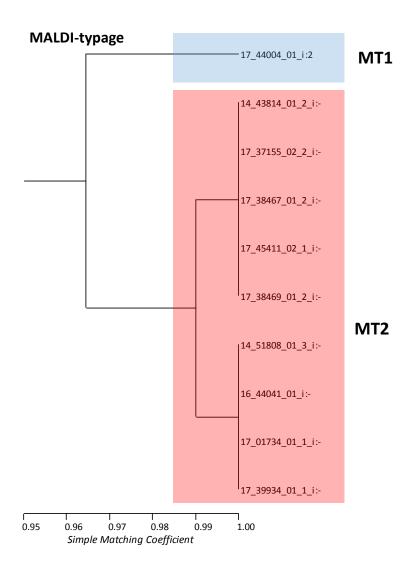
PASTEURELLA MULTOCIDA


Souche	Sérotype	MALDI-type	IR-type CSB1	IR-type CSB2	IR-type CSB3	IR-type MH3
17 01532 01	H1N7	MT3	IR2	IR2	IR2	IR2
17 01532 02	H1N7	MT4	IR4	IR4	IR4	IR1
17 01532 03	H1N7	MT4	IR7	IR7	IR4	NEW
17 01558 01	H1N7	MT4	IR5	IR5	IR5	ND
17 01558 02	H1N7	MT4	IR5	IR5	IR5	IR1
17 01558 03	H1N7	MT4	IR5	NEW	IR5	IR1
17 01558 04	H1N7	MT4	IR1	IR1	IR1	IR1
17 01568 01	H1N3	MT4	IR5	IR5	IR5	IR5
17 01570 01	H3N8	MT2	IR3	IR3	IR3	IR3
17 01571 01	H4N9	MT1	IR6	IR6	IR6	IR6

- → Cohérence partielle du typage IR avec la sérotypie somatique Différenciation importante des isolats
- → Quelques variations dans le clustering IR, nécessité de poursuivre les mises au point

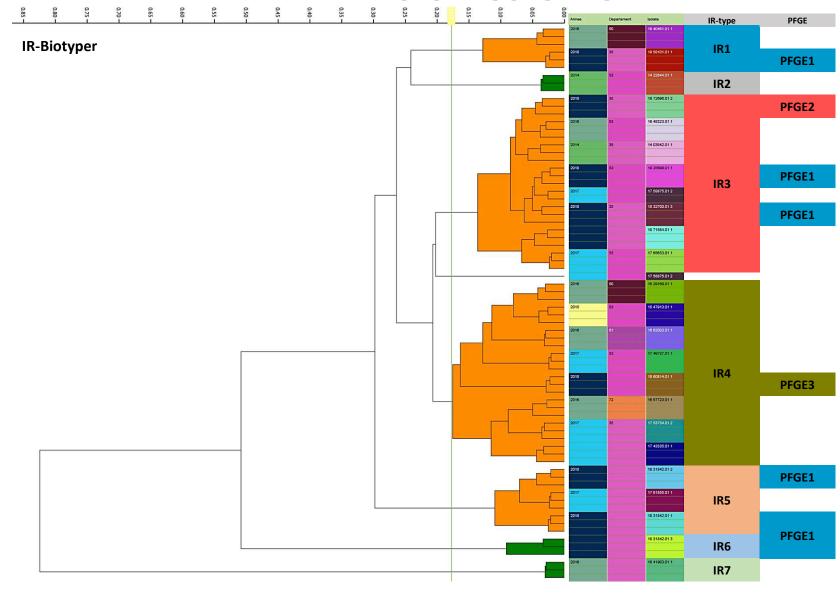
SALMONELLA ENTERICA SSP ENTERICA


- o Bacille à Gram-, mobile, rarement capsulé
- Cause majeure de toxi-infection alimentaire collective
- > 2500 sérovars (>1500 sérovars S. enterica ssp enterica)
- 6 sérovars réglementés en filière gallus et dinde
 S. Typhimurium, S. Enteritidis, S. Infantis, S. Virchow, S. Hadar, S. Kentucky
- Impact économique (abattage, traitement thermique, réorganisation à l'abattoir ...)



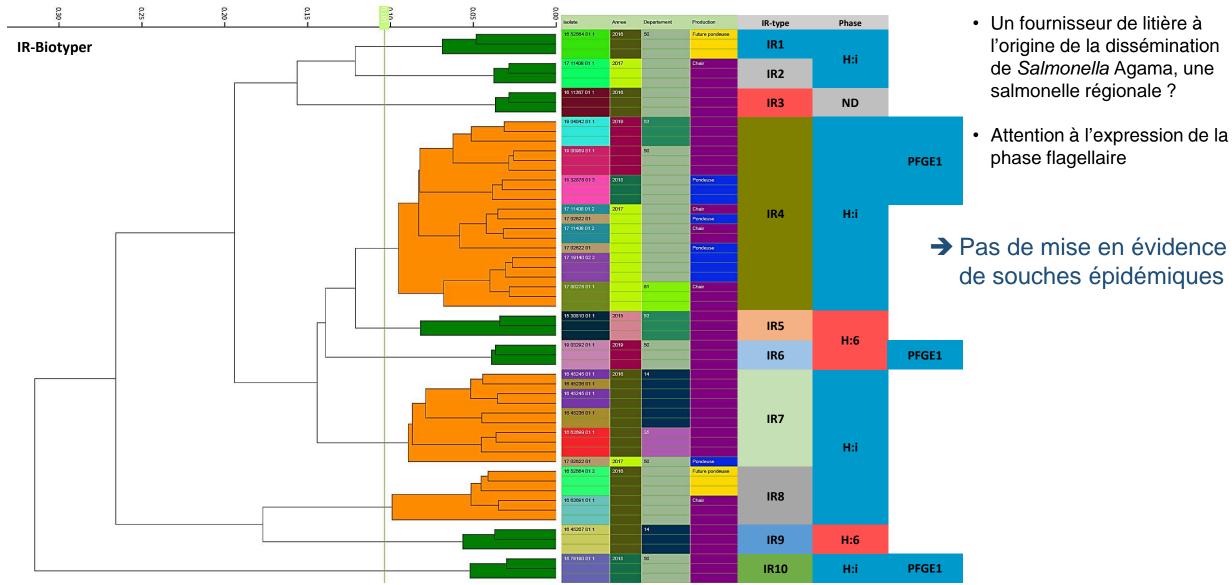
- ◆ Analyse de 10 souches S. variants monophasiques de Typhimurium
- **○** Analyse de 24 souches S. Montevideo
- **♦** Analyse de 19 souches S. Agama
 - MALDI-typage
 - Sérotypage
 - PFGE, MLVA, WGS
 - IR-Biotyper

SALMONELLA TYPHIMURIUM - 1,4,[5],12:1:1,2 ET 1,4,[5],12:1:-


SALMONELLA TYPHIMURIUM - 1,4,[5],12:1:1,2 ET 1,4,[5],12:1:-

Souche	Sérotype	Espece	MLVA	WGS	Maldi-type	IR-type TS1	IR-type TS2	IR-type MH1	IT-type MH2
14 43814 01 2	O4:i:-	Canard	3-12-112-211	2.2	2	IR3	IR3	IR3	IR1
14 51808 01 3	O4:i:-	Canard	3-13-132-211	2.5	2	IR5	IR5	IR5	IR5
16 44041 01	O4:i:-	Canard	3-13-132-211	2.1	2	IR4	IR4	IR4	IR4
17 01734 01 1	O4:i:-	Canard	3-13-132-211	2.1	2	IR4	IR4	IR4	IR4
17 37155 02 2	O4:i:-	Canard	3-12-62-311	2.4	2	IR2	IR1	IR1	IR2
17 38467 01 2	O4:i:-	Canard	3-12-112-211	2.2	2	IR1	IR1	IR1	IR1
17 38469 01 2	O4:i:-	Canard	3-12-112-211	2.2	2	IR1	IR6	IR6	IR1
17 39934 01 1	O4:i:-	Poulet	3-12-112-211	2.3	2	IR6	NEW	NEW	IR1
17 44004 01	O4:i:2	Canard	3-15-14-25-311	1	1	IR7	IR7	IR7	IR7
17 45411 02 1	O4:i:-	Poulet	3-12-112-211	2.3	2	IR6	IR6	IR6	IR6

- → Cohérence du typage IR avec le typage moléculaire (jusqu'au WGS et au-delà ?) Différenciation importante des isolats
- → Quelques variations dans le clustering IR, nécessité de poursuivre les mises au point
- → MALDI-typage Salmonella intra-sérotype non pertinent


$SALMONELLA\ MONTEVIDEO\ -\ 6,7,14,[54]:G,M,[P],S:[1,2,7]\ (SALMONELLA\ MONOPHASIQUE)$

- Un fabriquant d'aliment à l'origine de la dissémination de *Salmonella* Montevideo chez plusieurs éleveurs ?
- → Pas de mise en évidence de souches épidémiques

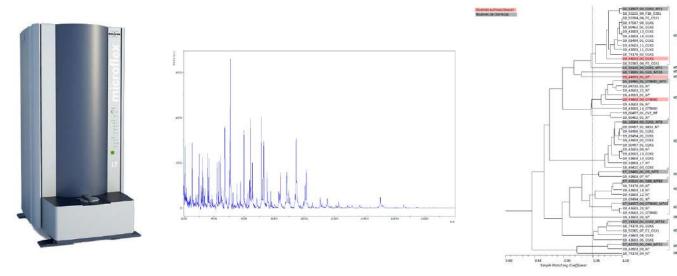
IR-BIOTYPER

Pour:

- Rapide
- Peu de consommables
- Solution logicielle adaptée pour l'analyse automatisée des spectres FT-IR (dendrogramme, matrice de distance, analyse en composante principale ...)
- Très différenciant
- Analyse épidémiologique rapide pour une mise en évidence de clones épidémiques

Contre:

- O Normalisation délicate (sensibilité aux conditions de culture, milieu, température, durée d'incubation et quantité d'échantillon)
- Difficultés dans la comparaison de spectres IR sur différentes acquisitions dans le temps (Introduction de souches de référence, régulation de l'hygrométrie)
- Boite noire entre les données spectrales et les résultats de classification Difficulté dans la détermination de la valeur d'un cut-off
- Robustesse dans la différenciation et la distribution des complexes clonaux à confirmer



IR-Biotyper

Avis préliminaire

Ne remet pas en question <u>pour le moment</u> la stratégie analytique Finalab

- o Identification des germes d'intérêt par spectrométrie de masse MALDI-TOF
- Sérotypage par agglutination / Gen-O-typage par biologie moléculaire
- Antibiogramme
- MALDI-typage, comparaison de l'expression d'un panel de protéines (reliées à des gènes avec polymorphismes ou isoformes caractérisés)
- PCR de détection de gènes de virulence
- MLST par séquençage moléculaire
- Comparaison de génomes complets (WGS, Gold standard)

MERCI DE VOTRE ATTENTION

Contributeurs

Emeline CALLAC-ROUXEL Florence FAUREZ Klervi L'Her

Frédéric BOURGEON Jean-Louis PINSARD

Guillaume BOIS-SALVARO (Bruker)